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Model Equivalence Abstraction and Simulation

Model Equivalence

Let A and B be Kripke structures.

Question

When does A |= ϕ⇔ B |= ϕ for all LTL formulae ϕ?

When A and B have the same behaviours. Why?
Liam: prove it on the board

This is called infinite completed trace equivalence.
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Model Equivalence Abstraction and Simulation

Limitations of Traces

∅

paid

paid

coffee

tea

∅ paid
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tea

Traces cannot distinguish these two models!
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Model Equivalence Abstraction and Simulation

Model Equivalence

Question

When does A |= ϕ⇔ B |= ϕ for all CTL formulae ϕ?

hmm...

Is it (only) when A = B (graph isomorphism)?

a a a

Nope!
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Model Equivalence Abstraction and Simulation

Tree Equivalence?

Is it (only) when the two automata have the same computation
tree?

a

b

b

a b

Also no!
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Model Equivalence Abstraction and Simulation

Bisimulations
Definition

A (strong) bisimulation between two automata A and B is defined
as a relation R ⊆ QA × QB which satisfies:

If s R t then LA(s) = LB(t)

If s R t and s
a−→ s ′ (with a ∈ ΣA, s

′ ∈ QA) then there exists a
t ′ ∈ QB such that t

a−→ t ′ and s ′ R t ′.

If s R t and t
a−→ t ′ (with a ∈ ΣB , t

′ ∈ QB) then there exists a
s ′ ∈ QA such that s

a−→ s ′ and s ′ R t ′.

Two automata are bisimulation equivalent or bisimilar iff there
exists a bisimulation between their initial states.

Let’s find bisimulations for the previous examples.

Result

For two finitely-branching automata A and B, A |= ϕ⇔ B |= ϕ for
all CTL formulae ϕ iff they are bisimilar.
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Model Equivalence Abstraction and Simulation

Simulation

Are these bisimilar?

red green yellow

red ¬red

No, but one simulates the other.
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Model Equivalence Abstraction and Simulation

Simulation Relations

Definition

A simulation of an automaton C by an automaton A is defined as
a relation S ⊆ QC × QA which satisfies:

If s S t then LC (s) ∩ LA = LA(t)

If s S t and s
a−→ s ′ (with a ∈ ΣC , s

′ ∈ QC ) then there exists a
t ′ ∈ QA such that t

a−→ t ′ and s ′ R t ′.

The automaton A is an abstraction of the concrete automaton C
iff a A simulates C . This is sometimes written A v C .

Abstraction and Traces

If A v C , then every trace of C restricted to LA is a trace of A.
σ1σ2σ3 · · · ∈ Traces(C )

⇒
(σ1 ∩ LA)(σ2 ∩ LA)(σ3 ∩ LA) · · · ∈ Traces(A)
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Model Equivalence Abstraction and Simulation

Essential Property of Simulations

Let A be a simulation relation, showing that X v Y .
Then for every run ρ1ρ2ρ3 · · · ∈ Y is a run of X by applying the
simulation relation as an abstraction mapping:

A(ρ1)A(ρ2)A(ρ3) · · · ∈ X

•

•

•

•

• •

•

• • •

•
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Model Equivalence Abstraction and Simulation

Comparing Automata

red green yellow

red ¬red

red ¬red

What are the simulations between these?
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Model Equivalence Abstraction and Simulation

Reducing State Space

We want abstraction to shrink the state space for model checking.
To do this, we need a guarantee that any property we prove about
an abstraction applies just as well to the concrete model.

Universal Properties

Given A v C , which ϕ satisfy A |= ϕ⇒ C |= ϕ?

red green yellow

red ¬red

AG AF ¬red? Works! ¬AG AF red? Doesn’t work!
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Model Equivalence Abstraction and Simulation

Universal CTL

Negation Normal Form

ϕ is in negation normal form (NNF), written ϕ̂, if all negations are
applied only to atomic props. All formulae have a NNF equivalent.

ACTL

ϕ is a formula in ACTL, the Universal CTL, iff its negation normal
form, ϕ̂, does not contain E.

Example

AGp

AG AFp

EFp — Nope!
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Model Equivalence Abstraction and Simulation

Negation Normal Form

¬AFϕ ≡ EG¬ϕ
¬EFϕ ≡ AG¬ϕ
¬AGϕ ≡ EF¬ϕ
¬EGϕ ≡ AF¬ϕ
¬AXϕ ≡ EX¬ϕ
¬EXϕ ≡ AX¬ϕ

¬E(ϕ U ψ) ≡

A(¬ϕ R ¬ψ)
¬A(ϕ U ψ) ≡ E(¬ϕ R ¬ψ)

Release Operator

The temporal operator ϕ R ψ says that ψ will not become false
unless ϕ happens first.

σ |= ϕ R ψ ⇔ ∀n ≥ 0. (∀0 ≤ k < n. σ|k 6|= ϕ)⇒ σ|n |= ψ

A and E variants in CTL follow the usual pattern.
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Model Equivalence Abstraction and Simulation

Bisimulation and simulation
Suppose that A v B and B v A. Does that mean A is bisimilar to
B?

a b c

a b

b

c

Nope! This is another equivalence called simulation equivalence.
Because of the abstraction result, ACTL is the logic that
characterises simulation equivalence.
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Model Equivalence Abstraction and Simulation

The Linear-time Branching-time Spectrum

Coarseness of Equivalences

Graph isomorphism is finer (distinguishes more models) in
than bisimilarity.

Bisimilarity is finer than simulation equivalence.

Bisimilarity is finer that completed infinite trace equivalence.

Partial trace equivalence (sets of finite-length traces) is
coarser than all of the above.

There are many, many more equivalences.

Rob van Glabbeek categorised all of these equivalences and more
into the linear-time branching-time spectrum, which is a major
focus of his course at this university, COMP6752.
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